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ABSTRACI" 

This paper is concerned with the finite forcing companion T f and the infinite 
forcing companion T t of a number theory T. A number theory is any theory 
containing the V2-part of peano number theory P. Two of our results are as 
follows: (A) for each number theory T, the theory T f is not arithmetical, and 
the theory T r is not analytical, and (B) there is a s~ntence ~r ~ V 4 such that, for 
each two (not necessarily distinct) number theories TI, Tz, bath o'~ Tf~ and 
--7 frET2 e. 

0. Introduction 

Although our resmts are concerned with forcing companions, we do not use 

any forcing techniques in our proofs. In fact our proofs can be followed (although 

not necessarily understood) without any knowledge of model-theoretic forcing. 

This is because the relevant facts concerning model-theoretic forcing can be 

described in a standard model-theoretic setting. This is done in w 

Our proofs make use of a construction of M. Rabin concerning P. We show 

that in certain nonstandard models of  number theories, the set of standard 

integers can be defined. This is done in w 

In w we combine w and w to get our results, and in w we give some open 

questions. 

The results given here were obtained during October-December  1971 while 

the first author was spending some time at the University of  Aberdeen. This was 

after the second author had heard A. Robinson speak on the subject at the Inter- 

national Congress for Logic, Methodology, History and Philosophy of Science, 
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in Bucharest, September 1971, but before any of us had seen Robinson's pa- 

per [13]. Our results considerably improve Robinson's. (After receiving a pre- 

print of [13] we were able to simplify part of w however, this made no essential 

improvements to our results.) �9 

In February 1972, we received summaries of the doctoral dissertations of 

J. Hirschfeld [3], and W. H. Wheeler [18]. Hirschfeld's dissertation contains 

some results similar to ours. After reading the summary of [3], our understanding 

of model-theoretic forcing as applied to number theories has greatly improved, 

however the results given here are not influenced by [-3]. 

We recommend [3] as essential reading for everyone interested in the subject. 

Wheeler has obtained several results concerning the complexities of forcing 

companions, and analogues of some of our results for theories of groups and 

division rings (see also [5], [6]). 

1. The model-theoretic requirements 

In this section we set up the required model-theoretic machinery. Nowhere in 

the section do we use or again mention number theories. 

We look at some fixed but arbitrary countable first order language L;  all 

theories, structures, etc., that occur are L-theories, L-structures, etc. (The counta- 

ability of L is necessary for our discussion of finite forcing, and simplifies slightly 

our discussion of infinite forcing.) The sets of L-formulae V,, 31, Yz, 32, ' "  are 

defined in the usual way as sets of formulae in prenex normal form with specified 

prenexes, as indicated. 

A model of a theory T is, of course, a structure 9~ such that 9A ~ T; let ~ ' ( T )  

be the class of models of T. A submodel of T is a structure 9~ such that 9.I ~ 

for some ~ ~ ~ '(T);  let Sa(T) be the class of submodels of T. Thus ~(T)  is the 

class of models of T o V1. 

Two theories Tt,  T2 are mutually model-consistent if 6a(T1)= Se(T2), in 

other words if TI~ Vl = T2 ~ Vl. 

A class of structures ~ 1  is cofinal in a class of structures ~e" 2 if ~ f l  -~ o'Y'2 and, 

for each 9A ~ J l2 ,  there is some ~ ~ o,Y', with 9A _~ ~ .  Thus JI(T) is cofinal in 

6a(T). 

The basic concept of this section is that of a companion operator. 

DEFINITION. A companion operator is a function ( - ) *  taking theories T to 

theories T* such that 
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(*1) T,~ V 1 = T2~ V, ~T~* = T*, 

(*2) T~ Vl = T*~ Vl, 

(*3) T~ V 2 _ T*. 

319 

The theory T* is the *-companion of T, and T is *-complete if T = T*. 

A standard method of producing a companion operator is to select a eofinal 

subclass ~ of each 5r and put T* = Th(aT'). The conditions (*1) and (*2) 

are then automatically satisfied, and by a suitable choice of :,T" we have (*3) also 

satisfied. 

Historically, the notion of a companion operator goes back to that of the 

model completion of a theory, as defined by A. Robinson. This was later refined 

by E. Bers to the notion of the model companion of a theory; a theory T" is a 

model companion of a theory T if T, T" are mutually model-consistent and T" is 

model-complete. An easy proof shows that each theory has at most one model 

companion, and clearly any model completion is a model companion. However 

there are theories with no model companion, and theories with a model companion 

but no model completion. (It is known that a theory T has a completion if and 

only if it has a companion and T~ Vx has the amalgamation property, in which 

case the companion is the completion. Since a theory T has quantifier elimination 

if an only if T is model-complete and T~ Vl has the amalgation property, we see 

that the existence of a completion gives us quantifier elimination but the existence 

of a mere companion does not.) 

If T has a model companion then the action on T of any companion operator 

( - )* is trivial (see Theorem 1.1 below). If T has no model companion then T* is 

a possible substitute for T". 

THEOREM 1.1. I f  the theory T has a model  companion T r" then T *= T = fo r  

each companion operator ( - )*. 

PROOF. T" is V2-axiomatizable and the theories T", T are mutually model- 

consistent; thus (*3) and ('1) give 

T r" _ T m* -- T*. 

Now consider any ~ ~ T r". We have ~ _ ~ for some ~ ~ T* (because of ('2)), 

and so 9 / - ~  (since T" is model-complete). Thus 9I~ T* and so T* _ T' ,  as 

required. 

An attempt was made by K. Kaiser in [4] to deal with theories without model 
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companions. Essentially, he introduced what turns out to be the minimum com- 

panion operator, by proving the following theorem. 

THEOREM 1.2. For each theory T, the set K(T), of VE-axiomatizable theories 

T'  such that T, T '  are mutually model-consistent, has a maximum member T ~ 

PROOF. (See [4, S~.tze 1, 2, 3].) Zorn ' s  lemma produces a maximal member  

T O of K(T), and for any T ' e  K(T), the deductive closure of T O ~T' is also in 

K(T); hence, T '  _ T O and T O is maximum. 

COROLLARY ].3. The function ( - )o is a companion operator. 

PROOF. (*l) Suppose T1, T2 are mutually model-consistent. Let T ' =  T ~ 

so that T '  is V2-axiomatizable and (using T2) the theories T1, T '  are mutually 

model-consistent. Thus T o = T '  _c T o, and similarly T o ~ T ~ . 

(*2) This follows immediately from the definition of T ~ 

(*3) This follows by letting T '  be the deductive closure of  T~ V2. 

To see that ( - )o is the minimum companion operator,  we use the following 

theorem. 

THEOREM 1.4. For each two companion operators ( - )*, ( - )*'  and theory T, 

T**'  = T*',  

T*~ V2 = T* '~  u 

T O _ T*. 

Part (i) follows since T, T* are mutually model consistent; (ii) follows 

T*~ V 2 c_ T**'  = T* ' ;  

and (iii) follows from (ii) since T O is V2-axiomatizable. 

It is possible to describe the 31-part o f T ~  to do this let us say a sentence ,r is 

T-tame if ~ e 31 and 

T k a - ~ : ~ T k  

holds for each sentence a e VI. 

THEOREM 1.5. For each theory T, T~ :~1 is the set ofT-tame sentences. 

PROOF. Consider any sentence a e 31. 

Suppose first that t~ e T o and T k a ~ ~ for some sentence ~ e Vl. The sentence 

O" ~ ~ is V 2 and so T O k a -~ ~ which gives T o I- ~. Thus T / -  ~, and so tr is T-tame. 
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Secondly, suppose that a is T-tame. Notice that Tu{a } is consistent (for, if not, 

then 

T I- r ~ (Vv)[v # v] 

and so T is inconsistent). Let T1 be the deductive closure of T U {a}. The tameness 

of a shows that T, T1 are mutually model-consistent, and so a e T  o = T ~ as 

required. 

We now turn our attention to the two forcing companion operators ( - ) : ,  

( - ) g  introduced byA. Robinson in a series of papers [1, 10, 11, 12]. (We write 

( - )g for Robinson's ( - )F in order to simplify the notation.) Originally, ( = ):, 

( - )g were constructed using forcing techniques; however, it turns out that they 

cart be described in standard model-theoretic terms. To do this, it is convenient 

to consider another companion operator ( - )e. 

The relevant facts concerning T e, T g are given in Theorems 1.6-1.11 (below). 

These theorems are not new here; they have been known to several people (in- 

cluding G. Cherlin, E. Fisher, and A. Robinson) for some time. There are no 

adequate references for their proofs, but, with the aid of the given hints, the 

reader should have no difficulty providing their proofs. 

The relevant facts concerning T:  are given in Theorem 1.12 and its Corollaries 

1.13-1.15. 

Let 2[ be any structure. By a type over 2[ we will mean here a set F(ti, fi) of 

3:formulae containing parameters ti (denoting members of 2[) and free variables 

~. We are particularly interested in finite and countable types. For any two struc- 

tures 9~, ~ we write 

if 2[ ~_ ~ and each finite or countable (respectively) type over 2[ which is realized 

in ~ is already realized in 2[. 

DEFINITION. For each theory T, the class 8T is the class of submodels 2[ of T 

such that 

holds for each model ~ of T. 

The class c~ T is the class of submodels 2[ of T such that 

holds for each model ~3 of T. 
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The class 8T has been studied in a slightly different context in [15]; the members 

of Cr are T-existentially closed structures. The class %r has been studied in [17], 

where the members of cOT are called ~1 - WJo structures. 

We have the following characterizations of CT, <~T. 

THEOREM 1.6. For each theory T, the class r is uniquely characterized 

by the following three conditions: 

i) CT is cofinal in ~(T). 

ii) The implication 

holds for each two members 9~, ~3 of CT. 

iii) The implication 

holds for each two structures 9~, ~3. 

PROOF. See [15, Th. 2.8, 2.10]. 

THEOREM 1.7. For each theory T the class ~T is uniquely characterized by 

the followina three condi*ions: 

i) ~ r  is cofinal in : (T ) .  

ii) The implication 

holds for reach two membes 9s ~3 of ~ T. 

iii) The implication 

holds for each two structures 9~, 9B. 

PROOE, For existence, see [17, Th. 2.8] and then argue as in Theorem 1.6. 

The connection between ST, ~T is given in the following theorem. 

THEOREM 1.8. For each theory T, 8T is the class of structures 9A such that 

9,1.< 1~ for some ~ ~ :r . 

We also note the following theorem. 

THEOREM 1.9. For each theory T the implication 
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holds for each two members 9~, ~ of :r T. 

PROOf. See [17, Corollary 5.6]. 

For each theory T, we let 

T e = Th(r T o = Th(:gT) 

and obtain two companion operators. 

TrIEOREM 1.10. The two functions ( - ) e ,  ( _ ) g  are companion operators. 

PROOF. From Theorem 1.6, we see that ( - ) e  has (*1) and (*2). For  each 

9~ ~ CT, we have 9.I __q ~5 for some ~5 ~ T (since d' T is cofinal in 5e(T)). But then 

9~ -< 1 ~B and so ~ ~ T ,  V2, hence ( - )e has (*3). 

In the same way we see that ( - )0 is a companion operator. 

The theory T g is the infinite forcing companion of T; to see this we go via the 

class of T-infinite generic structures. 

DEFINITION. For each theory T, the class fgT is the class of submodels 

o f T  such that 9~-<~ for some ~3 E~T. 

The following theorem characterizes (r 

THEOREM 1.11. For each theory T, the class f i t  is uniquely characterized by 

the following three conditions: 

i) f i t  is cofinal in 5:(T). 

ii) The implication 

holds for each two members ~,  ~ of fiT. 

iii) The implication 

holds for each two structures ~,  ~3. 

The class of T-infinite-generics satisfies conditions (i), (ii) and (iii) of Theorem 

1.11 and so ~T is this class. Clearly, T ~ = Th(~CT) so that T o is the infinite forcing 

companion of T (i.e. Robinson's T~). 

Several people have noted that the whole of the machinery of infinite forcing, 

can be developed from this standpoint. 

We now come to the finite forcing companion operator. 
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DEFINmON. For each theory T, the class ~-T is the class of T-finite-generic 

structures, and T :  = Th(~T).  

The development of the properties of ~ z  and T :  can be found in [1]. For  us 

the following characterization of ~ T  (Theorem 1.12) is sufficient. Remember that 

a completing model of a theory T is a model 9.1 of T such that 

holds for all models ~3 of T .  

THEOREM 1.12. For each theory T the class ~ i  is uniquely characterized 

by the followin9 two conditions: 

i) T, Th(.~-T) are mutually model-consistent. 

ii) "~T is the class of completin9 models of Th(~T).  

PROOF. See [16]. 

COROLLARY 1.13. The function ( - ) :  is a companion operator. 

COROLLARY 1.14. A theory T is f-complete if and only if T is the theory of 

the class of its completin# models. 

COROLLARY 1.15. For each theory T, if T:  ~ T then T :  = T. 

Notice that for each theory T we have 

:~T ~ ':r ~-" ~'~T ~-- ~-T, 

T g ~ T ~ __ TT. 

Let B be some fixed V2-axiomatizable theory and put 

B = {T: B_v_T} 

i.e. B is the set of theories extending B. This set B is closed under each companion 

operator ( - )*; in particular, B is closed under ( - )~, ( - ):, ( - )9. Associated 

with B are three theories E, F, G and four classes of models 8, ~ ,  ~, ~ given as 

follows: 

E =  n i t  e: T B}, e = u {eT  : T B}, 

V= n(T::  T a}, = u( T : T B}, 

G =  ~ { T "  : TEB},  :d = U{~T : T E B ) ,  

= u { ~ r  : T~B}.  
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Clearly we have, 

~__ .~9_~___~ r ,  

E = Th(e) ,  F = T h ( ~ ) ,  

G = Th(~) = Th(~), 

and for T ~ B, 

325 

F _~T r 

uI ul 
E _~T e 

G ~ T  g. 

The classes ~, ~-, if, T are characterized in the following theorem. 

THEOREM 1.16. 1) The members of ~ are exactly those models ~ of B such 

that 

~ _ c ~ ,  ~ -  ~ ~ ~ - < ~ B  

holds for all structures ~ .  

2) The members of .~- are exactly those models 9.[ orB such that 

holds for all structures ~ .  

3) The members of ~ are exactly those models 9~ of B such that 9~.K ~ for 

some ~ ~ (~. 

4) The members of ~ are exactly those models 9~ of ~ such that 

holds for all structures ~ .  

PROOF. 1) First, suppose that ~ ~ ~, so that ~ ~ Ct for some T ~ B. Consider 

any ~ with 9~ ~ ~ ,  9~ - ~ .  We have ~ ~ ~(T)  so that ~ _~ ~ for some ~ ~ T. 

Thus 9~ "<t ~ which gives ~ 1 ~ .  

Secondly, suppose 9.I satisfied the implication of (1) for all structures ~ .  We 

have T = Th(9~) e B and 9/~ CT, hence 9/e  r as required. 
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2) First, suppose that 9~ e ~' .  We see that 9.I satisfies the required implication 

by the method of part (1) (using Theorem 1.12). 

Secondly, suppose that 9~ satisfies the given implication and let T = Th(9~). 

Corollary 1.14 shows that T is f-complete, and so ~ e ~ - r ,  as required. 

3) This follows from the definition of  f~r. 

4) This is proved in the same way as (1). 

Finally we note the following theorem. 

THEOREM 1.17. The theories B, E, F, G have the same V1 parts. 

PROOF. Consider any sentence ~ e V1. If  cz ~ B, then B ~ { 7 c~} is consistent, 

and so 
7 ~ e T e c T:  n Tg 

where T is the deductive closure of B ~ { 7 ~}. Thus 

E u { 7 ~ } ,  F u { 7 ~ } ,  G u { 7 = }  

are each consistant, so that 

e E ,  ~r  = r  

This gives 

E,~ V I ~ B ~  V1, F~ VI-~B~V1,  G,~ gt-~B,~ g l ,  

and since the reverse inclusions are trivial, we have the required result. 

COROLLARY 1.18. For each theory T eB, the followin# implications hold: 

i )  T e ___ E e ~ T e = E e. 

ii) T: ~ F: ~ T: = F:. 

iii) T O _ G ~ T g = G g. 

PaOOF. In each case, the hypothesis shows that T, B are mutually model- 

consistent. 

2 .  T h e  n u m b e r - t h e o r e t i c  r e q u i r e m e n t s  

Let L be any countable language in which number theory can be formalized. 

The particular form of L is not important; however, we will make explicit use of  

the L-numerals O, 1,2, ..., n, .-., and the L-formula "v < w" (which is assumed 

to be 31). We let ~R be the L-structure with carrier set m (the set of natural num- 

bers) such that THOR) is full (complete) number theory. 

Let P be peano number theory, suitably formalized in L. 
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We study certain L-theories and L-structures called number theories and 

number structures, respectively. 

DEFINITION. The basic number theory B is the theory axiomatized by P,~ V~. 

A number theory is any theory extending B (i.e. any member of B). A number 

structure is any model of B. 

Notice that each number structure contains an isomorphic copy of 9~ as an 

initial segment. We will conveniently confuse ~ with this initial segment. 

Associated with B, we have all the machinery of w in particular, we have the 

class g of number structures. The aim of this section is to prove the following 

theorem. 

THEOREM 2.1. There is a certain 33-formula I(x) (containing just one free 

variable x) such that for each 9 / ~ ,  

i) I ~ = 09, 

ii) 9 / =  ~r  p, 

where p is the V4-sentence (Vx)I(x). 

In part (i) of this theorem 

I ~ = {a ~ A : 9 /~  I(a)} 

where A is the carrier set of 9/. 

The theory B contains quite a lot of recursive function theory. For us, the two 

important facts are concerned with the enumeration of r.e. and finite subsets of o9. 

Let W0, W1, W2, "" be any r.e. enumeration of all r.e. sets. Then, making essential 

use of Matijasevi~'s theorem [8], we have some 31-formula d(v,w) such that 

for each m e o9, 
n~ Wm'C~B ~ d(n,m) 

holds for all n E o9. The formula d(v, w) can be chosen so that for each formula 

0(v) ~ 31, 
B F (vv)E0(v) d(v, t)] 

holds for some t ~ o9. 

This formula d(v, w) will remain fixed throughout. 

Let Fo ,F t ,F2 , . . .  be any standard enumeration of all finite sets. Then there 

are formulae f+(v, w) ~ 31, f_(v, w) c Vl such that for each m ~ o9, 

n~Fmc~B l- f+(n,m), 

neFm'~.B ~" --af_(n,m), 
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hold for all n ~ to. These two formulae can be chosen so that 

B k (Vv, w)[f+(v,w)*-+ f_(v,w)].  

Throughout, we let f (v ,  w) be either f+(v, w) or f_(v,  w); at most times, it will not 

matter which one f (v ,  w) is. 

The following lemma is well known (c.f. [9, Th. 2.1]). 

LEMMA 2.2. i) 

P I- ( Vwx, w2)( 3w)(Vv)[d(v, wa) v d(v, w2) *-~ d(v, w)]. 

ii) For each m 1, m2 e o9, there is some m ~ o9 such that 

B k (Vv)[d(v, mOvd(v,  m z ) ~ + d ( v  , m)]. 

To get the formula l(x),  we combine a construction of Rabin [9], with one 

of Robinson [13]. Let 6(v) be any Vl-formula such that 

P ~- (Vw) 7 (Vv)[a(v) ,-+ d(v, w)] (2.1) 
and for each number structure 9~, 

9.[ ~ 7(gv)[a(v) ~ d(v, m)] (2.2) 

holds for all m e o9. (For instance we can put a(v) = 7 d(v,v).) Now consider 

the formulae 

H(w) = ( Vv)[d(v, w) -+ a(v)], 

I,;(v, x) = (3w < x)[H(w)vd(v ,  w)], 

so that K(v, x)e  32. Making use of Lemma 2.2, we have the following lemma 

(c.f. [9, Th. 2.2_]). 

LEMMA 2.3. i) P [- (Vx)( 3w)(Vv)[d(v, w)*-~ K(v, x)]. 

ii) For each number structure 9~ and each n ~ o9, there is some m ~ o9 such 

that 

9~ ~ ( Vv)[d(v, m) ~ K(v, n)]. 

At this point we could follow Rabin and put 

l(x) = ( 3w)( Vv)[ d(v, w),~, K(v, x)]. 

This gives Theorem 2.1 except that this I(x) is 34 rather than 33. In order to get 

l(x) e 33, we put 

a(x) = (Vv)[a(v),-, K(v, x)] 

(c.f. [13, 2.7]) and let I(x) = 7 J(x). This I(x) is 3 3. 
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THEOREM 2.4. i) P t- (Vx)I(x). 

ii) For each number structure 92 and each n ~ o,  92 ~ I(n). 

PROOF. i) Consider any model 9~ of P and some a E A. Let a'  be the successor 

of a in 92. 

First, suppose that 92 ~ H(a), so that 

92 ~ (Vv)[K(v ,a ' )~K(v ,a)v  d(v,a)], 

a,~d hence Lemma 2.3(i) gives 

92 ~ ( Vv)[K(v, a') ~ d(v, b) v d(v, a)] 

for some b e A. Lemma 2.2(i) now gives 

92 ~ (Vv)[K(v,a')~--~d(v,c)] 

for some c e A. 

This is still true if 92 ~ --1 H(a), for in this case we can put c -- b. 

Thus we have 

92 ~ J(a') ~ (Vv)[6(v) ~ d(v, c)] 

so that (2.1) gives 92 ~ I(a'). It is trivial to verify that 92 ~ I(0), and so 

92 ~ (Vx)I(x), as required. 

ii) This is proved in the same way using Lemmas 2.3(ii), 2.2(ii) and (2.2). 

We are now ready to prove Theorem 2.1. 

PROOF OF THEOREM 2.1. i) Consider any 9 2 e r  Theorem 2.4(ii) gives 

co ~ I ~, hence it suffices to show I~a_~o. To do this we show A - o ~  _ j,a. 

Consider any a e A - co. Since 

92 ~ (Vv)[K(v, a) -~ ~(v)] 

holds for all number structures it is sufficient to show 

92 ~ (Vv)[6(v) --* K(v, a)]. (2.3) 

Suppose 92 ~ ~i(b) for some b e A .  Since 5(v)e Vl and 92e8,  a simple com- 

pactness argument (c.f. [15, Th. 2.1]) produces a formula O(v)e 3t such that 

92 ~ O(b), 92~ (Vv)[O(v) ~ 6(0].  

We may replace O(v) by d(v, t) for some t e co so that 

92 ~ d(b, t), 92 k H(t). 
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Thus, since a E A - 09 and so t < a, we have 9I b K(b, a), which verifies (2.3). 

ii) This follows immediately from (i). 

Originally, Rabin used his construction to show the independence of the induc- 

tion axioms from the other axioms of number theory. The methods of this section 

give the following improvement of [-9, theorem on p. 299] and [-2, theorem on 

p. 43]. 

THEOREM 2.5. ?here is a sentence p,E V.+4 such that for each Vn+2-axio- 
matizable number theory T, p, ~ P - T. 

PROOF. First consider n = 0. Let P0 = P so that p ~ P (by Theorem 2.40)). 

Let 91~O~T with 91 ~ ~R, so that 91b ~ P0 (by Theorem 2.1(ii)). But T is V2- 

axiomatizable and so 91 ~ T, hence Po ~ T, as required. 

For n > 0, the relevant parts of this section and Section 1 can be relativized. 

Thus d(v, w) is replaced by a formula d (") ~v,w)~ 3.+2 which enumerates all 3.+~- 

formulae, and g is replaced by the class of number structures 91 satisfying 

91-<.~3, 9 1 -  ~3 ~ 91 <.+1 ~ 

for all structures ~ .  (The relations "-<n", "<n+ ~" are defined in the obvious way.) 

We do not need to replace B by P~ V. + 2 since d~")(v, w) can be constructed from 

d(v, w) using machinery available in B. 

3. The results 

We now use Theorem 2.1 to obtain information about the set up described 

in w with B as the basic number theory. Two particular members of B are peano 

number theory P and full number theory N (= Th(9~)). We assume the language 

of B has been equipped with a G6del numbering, so we may describe the complexity 

of theories by recursion theoretic methods. All of the recursion theory we use 

can be found in [141. 

The following theorem may be well known; however, it does not seem to have 

been stated anywhere. 

THEOREM 3.1. There is no model-complete number theory. 

PROOF. Suppose T is a model complete number theory, so that 8T = ~ (T) 

and consider the set of formulae 

( I ( x ) ) u ( n  < x  : 

This set is finitely satisfiable in every model of T, and so is satisfiable in some 
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model 9~ of T. We then have I ~ #  co (since the set is satisfied), and 1 ~ =. co 

(since ~ ~ ~). This contradiction gives the required result. 

The sentence CON(B) which naturally expresses the consistency of B is Vl 

(by [8]), and so is a member of N O (since 9~ ~ CON(B)). In contrast we have 

the following theorem. 

THEOREM 3.2. The sentence-7 CON(B) is B-tame, and hence is a member 

of B ~ 

PROOF. See [7, Th. 4.3] and Theorem 1.5. 

This theorem exemplifies the strange properties of companions of number 

theories. The theorem remains true if B is replaced by any r.e. number theory. 

THEOREM 3.3. For each number theory T, both T O ~ F and T O ~ G hold. 

PROOF. The proof of both parts is similar, so we prove only T O ~ G. 

Suppose that T O _ G, so that Theorem 1.17 gives 

and hence 

Theorem 3.2 now gives 

which is a contradiction since 

T,~ V1 = T~ V1 = B,~ V1, 

B o = T ~  

CON(B) ~ G ___ N g 

CON(B) ~ N o ~ N g. 

This completes the proof. 

Clearly we have 9 ~  and so E ~ F ~ N. From theorem 2.1(ii) we see that 

N is axiomatized by E~ {p}, and so that 

tr ~ p ---~ ff 

is an interpretation of N in E. However, there is a more useful interpretation. 

For each formula ~b let tk (t) be the formula obtained from ~b by relativizing all 

quantifiers to I. Theorem 2.1(i) shows that for each 9~ e 8, each formula ~b, and 

each co-sequence ~ of members of co, 

Thus the map 



332 D .C .  GOLDREI ET AL. Israel J. Math., 

is an interpretation of N in (all extensions of) E. 

A set X ~ co is definable in ~1~ ~ ~ if for some formula ~b, 

neX,~9~ ~ r 

holds for all n eco. Let us say a degree d is represented in 9~ if some member o f d  

is definable in ~.  The set d(~) of degrees represented in 9~ is of interest. 

The equivalence (3.1) gives us the following theorem. 

THEOREM 3.4. i) N is interpretable in E and all its extensions. 

ii) For each number theory T, if  E ~ T then T is not arithmetical. 

iii) Each arithmetical X ~_ co is definable in each ~ e g. 

iv) I f  X is arithmetical in Y (both being subsets of co) and Y is definable 

in 9.I e g, then X is definable in ~.  

v) For each ~ ,  if dEal(93), then each member of d is definable in ~.  

vi) For each ~ e g ,  d(9~) is an initial segment of degrees, contains all 

arithmetical degrees, and is closed under the jump operation. 

If  we replace the pair E, 8 by the pair G, (s the results of Theorem 3.4 can be 

considerably improved. Roughly speaking, we can replace N by full second 

order number theory 2N. We obtain an interpretation of 2N in G from the 

following theorem. 

THEOREM 3.5. Let ~ ~ cs X ~_ co. There is some a ~ A such that 

neXr  ~ f (n ,a )  

holds.for all n e co. 

PROOF. Consider the countable type (in the sense of w 

F(w) = (f+(n,w) : n ~ X } ~ ( - l f _ ( n , w ) :  n e X } .  

This is finitely satisfiable in any number structure; in particular, we have some 

~3>- 9~ which satisfied F. Thus, since WE c~, F is satisfied in 9~, as required. 

Theorem 3.5 shows that the elements of ~ ~ c~ can be used to index the subsets 

of co (in the same way that the elements of 9~ can be used to index the finite subsets 

of co), so we can replace second order quantification over co by first order quanti- 

fication over A. For each second order formula �9 containing no free second 

order variables, there is a first order formula ~b containing the same free variables 

as tI), such that for each 9~ ~ cs and each co-sequence ~ of members of co, 
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(3.2) 

from second order sentences to first order sentences is an interpretation of 2N 

in (all extensions of) G. 

For each 9.I e ~  we define in the obvious way the set D (9.I) of hyperdegrees D 

represented in 9/. 

The equivalence (3.2) gives us the following theorem. 

THEOREM 3.6. i) 2N is interpretable in G and all its extensions. 
ii) For each number theory T, if G ~_ T then T is not analytical. 

iii) Each analytical X ~_ o~ is definable in each ~ ~ ~. 

iv) I f  X is analytical in Y (both being subsets of co) and Y is definable in 

~ ~,  then X is definable in 9i. 

v) For each 9I E ~,  if D ~ D(~)  then each member of D is definable in 9I. 

vi) For each 9i ~ ,  D(91) is an initial segment of hyperdegrees, contains all 

analytical hyperdegrees, and is closed under the hyperjump operation. 

The next theorem gives a kind of normal form for formulae over G. 

THEOREM 3.7. For each formula dp(uD...,u,,v ) the sentence 

( Vu 1, ..., u,)( 3w)( Vv e I)[q~(u,,..., u r, v) *'*f(v, w)] 

is in G. 

PROOF. Consider any 9~ e ~,  any elements a l , . . . ,  a, of 9,1, and let 

X = { n e w :  9~ ~dp(al,. . . ,a,,n)}. 

Theorem 3.5 gives us some a E A such that 

91 ~ ~(a 1, '" ,  a,, n) +-*f(n, a) 

holds for all n e o). Thus, since I ~ = ~o, 

9,1 P ( 3w)( Vv e I)[~b(a 1,..., a,, v) +-~f(v, w)], 

which gives the required result. 

There is no similar normal form for F, but we do have the following theorem. 

THEOREM 3.8. For each formula (o(v) and formula e(v,w)e 3,, the sentence 

( 3w)(Vv e I)[~b(v) ~ e(v, w)] 

( 3w e I)(Vv e/)[~b(v) ~ d(v, w)] 
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Consider any 9~ E ~- such that 

9~ ~ ( 3w)( Vv ~ I) Irk(v) ~ e(v, w)]. 

Israel J. Math., 

Thus we have some a ~ A with 9~ ~ if(a), where 

4,(w) = (Vv ~ I)[~(v) ~ ~(v, w)]. 

Remembering that 9~o~-, a simple compactness argument produces a formula 

q~(w) e 31 such that 9~ ~ q6(a) and 

~ (Vw)[O(w)-, r 

We now consider the Vl-formula 

for which X(v) = (3w)[0(w)^ e(v, w)], 

9~ ~ ~b(n) ~ z(n) 

holds for all n ~co. We may replace X(v) by d(v, m) for some m ~ co, and so 

9~ ~ (~w ~ 1)(Vv ~ I)[~(o),-. d(v, w)], 

which gives the required result. 

Combining Theorems 3.7 and 3.8, we get the following theorem. 

THEOREM 3.9. There is an V4-sentence tr such that tr ~ F and 7 tre G. 

PROOF. Let 6(v) be any Vl-formula satisfying (2.2), and let a be 

7 ( ~w)(Vv E I)[,~(v),~f(v, w)]. 

Clearly a ~ V4, and Theorem 3.7 gives 7 a s G. 

Consider any 9A s ~z-, and suppose that 9~ ~ -1 tr. Theorem 3.8 now gives 

9A ~ (3w ~ I)(Vv E l)[6(v) ~ d(v, w)] 

which contradicts (2.2), and so 9A V a. Thus a ~ F, as required. 

Finally we prove the following theorem. 

THEOREM 3.10. For each number theory T, the only inclusions between the 

theories E, F, G, T e, T ~, T o are the obvious ones, 

F _ c T  y 

uI uI 
E _~T e 

G c T g .  
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In particular these stx theories are distinct. 

PROOF. There are 6 x 5 = 30 possible inclusions between the six theories 

Of these inclusions, nine hold (as indicated) and 16 fail because of Theorem 3.9 

(F, G have no common extension). The remaining five 

TeGE, T:_cF, Tg_cG, 

TeGF, T*GG, 

fail because of Theorem 3.3. 

4. Some open questions 

In this last section, we ask several questions which are either interesting in 

themselves or would increase our understanding of forcing companions. Several 

of these questions are not particularly concerned with number theories, although 

they are probably most easily answered for number theories. 

1. Which theories are such that all their companions are equal? Clearly T is 

such if and only if T: is V2-axiomatizable, but this is not a useful characterization. 

2. Does Theorem 1.1 have a converse? The full converse is false since there 

a re complete, non-model-complete, V2-axiomatizable theories. 

3. The space of companion operators is ordered in a natural way, and is a 

lower semi-lattice. What does this lattice look like? What are its universal and 

homogeneous properties? 

4. A companion operator is, in general, little more than a choice function, 

but the interesting ones are "uniform" in some sense. Can this be made precise? 

5. Suppose T 1 _c T2 and ( - ) *  is a "natural" companion operator. How are 

T~, T* related? 

6. The Stone space of the Lindenbaum algebra of B is a certain topology on 

the set of complete extensions of B. The closed sets of this topology correspond 

to the members of B. What are the topological properties of companion operators, 

in particular ( - ):? 

7. Under what conditions does 

TI _~ T 2, T1 f-complete :~ T2 f-complete 

hold? We know this holds if T 2 is a finite extension of T t. 

8. Let ~ be any of the classes dr, ~-, f~, ST, ~'T, f~T, and let i( J:), j( ~ ) ,  k(X') 

be the number of countable isomorphism types represented in X', the number of 
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elementary types represented in JU,, the least cardinal K such that ~ is L~,,~ 

definable, respectively. What can i(,~),  j (J{) ,  k(.8") be? Apart from the obvious 

inequalities the following are known or conjectured. 

i) T has JEP if and only ifj(;~'T) = l if and only if j(~T) = 1. 

ii) T has a model companion if and only if k(gr) = No if and only if 

k(~T) = N 0 if and only if k(f#x) = N o. 

iii) k(~/') < (2 ~~ )+; k(eT), k(~T) < N r  

iv) For  each number theory T, i(C~r) = 2 "~ . 

V) For  each complete number theory T, i ( ~ T ) =  1. This is a result of 
Hirschfeld. 

vi) For each r.e. number theory T, i(Fr) = 2 ~~ . 

vii) For  each number theory T, if T does not have JEP then J (~ -T)  = J ( f fT)  
21'tO. 

viii) j (g)  = j(~-) = j (~)  = 2 %. 

9. What are the properties of the theories E, F, G and the theory 

0 = n { T ~  

We know that N is axiomatized by E V {p} or F~, {p}. Using Hirschfeld's work 

we can construct z e  V4 such that F is axiomatized by Ev{z}; this sentence also 

satisfies -7 z e G. We believe there is a sentence tr ~ F~G such that t r r  T e for 

each number theory T. 

Postscript 

Using the method of  Hirschfeld, [3], we can obtain an I e 3 z . This gives 

several improvements to our quantifier bounds, as follows. 

Theorem 2.1: 

Theorem 2.5: 

Theorem 3.9: 

w Remark 9: 

In fact this new I is of the form 

I e  32, p~: V 3 . 

po E V3, Pn E Vn+3. 

a~  V3. 

T~ V 3 . 

(bounded 3)(u free) 

so there is some I ' e  V1 with 
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P F (Vx)[ I (x )  ~ I ' (x)].  

However ,  this equivalence is not  p rovab le  in B, for  otherwise we would  have  

some p ~ ~2 which is not  possible.  
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